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CS 188: Artificial Intelligence 
 

Review of Probability, Bayes’ nets 
 

DISCLAIMER: It is insufficient to simply study these slides, 
they are merely meant as a quick refresher of the high-level 
ideas covered.  You need to study all materials covered in 

lecture, section, assignments and projects ! 

 

Pieter Abbeel – UC Berkeley 

Many slides adapted from Dan Klein 

Probability recap 
§  Conditional probability 

§  Product rule 

§  Chain rule  

§  X, Y independent iff: 
 equivalently, iff: 
 equivalently, iff:  

§  X and Y are conditionally independent given Z iff: 

  equivalently, iff: 
  equivalently, iff: 2 

∀x, y : P (x|y) = P (x)

∀x, y, z : P (x|y, z) = P (x|z)
∀x, y, z : P (y|x, z) = P (y|z)

∀x, y : P (y|x) = P (y)
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Inference by Enumeration 
§  P(sun)? 

§  P(sun | winter)? 

§  P(sun | winter, hot)? 

S T W P 
summer hot sun 0.30 
summer hot rain 0.05 
summer cold sun 0.10 
summer cold rain 0.05 
winter hot sun 0.10 
winter hot rain 0.05 
winter cold sun 0.15 
winter cold rain 0.20 
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Bayes’ Nets Recap 
§  Representation 

§ Chain rule -> Bayes’ net = DAG + CPTs 

§  Conditional Independences 
§ D-separation 

§  Probabilistic Inference 
§  Enumeration (exact, exponential complexity) 
§  Variable elimination (exact, worst-case 

exponential complexity, often better) 
§  Probabilistic inference is NP-complete 
§  Sampling (approximate) 4 
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Chain Rule à Bayes net 
§  Chain rule: can always write any joint distribution as an 

incremental product of conditional distributions 

§  Bayes nets: make conditional independence assumptions of the 
form: 

 giving us: 

5 

P (xi|x1 · · ·xi−1) = P (xi|parents(Xi)) B E 

A 
J M 

Probabilities in BNs 
§  Bayes’ nets implicitly encode joint distributions 

§  As a product of local conditional distributions 
§  To see what probability a BN gives to a full assignment, multiply 

all the relevant conditionals together: 

§  Example: 

§  This lets us reconstruct any entry of the full joint 
§  Not every BN can represent every joint distribution 

§  The topology enforces certain conditional independencies 
6 
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Example: Alarm Network 

Burglary Earthqk 

Alarm 

John 
calls 

Mary 
calls 

B P(B) 

+b 0.001 

¬b 0.999 

E P(E) 

+e 0.002 

¬e 0.998 

B E A P(A|B,E) 

+b +e +a 0.95 
+b +e ¬a 0.05 
+b ¬e +a 0.94 
+b ¬e ¬a 0.06 
¬b +e +a 0.29 
¬b +e ¬a 0.71 
¬b ¬e +a 0.001 
¬b ¬e ¬a 0.999 

A J P(J|A) 
+a +j 0.9 
+a ¬j 0.1 
¬a +j 0.05 
¬a ¬j 0.95 

A M P(M|A) 
+a +m 0.7 
+a ¬m 0.3 
¬a +m 0.01 
¬a ¬m 0.99 

Size of a Bayes’ Net for 

§  How big is a joint distribution over N Boolean variables? 
2N 

§  Size of representation if we use the chain rule 

    2N 

§  How big is an N-node net if nodes have up to k parents? 

O(N * 2k+1) 
 
§  Both give you the power to calculate 
§  BNs:  

§  Huge space savings! 
§  Easier to elicit local CPTs 
§  Faster to answer queries 8 
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Bayes Nets: Assumptions 
§  Assumptions made by specifying the graph: 

§  Given a Bayes net graph additional conditional 
independences can be read off directly from the graph 

§  Question: Are two nodes guaranteed to be independent given 
certain evidence? 

§  If no, can prove with a counter example 
§  I.e., pick a set of CPT’s, and show that the independence 

assumption is violated by the resulting distribution 

§  If yes, can prove with 
§  Algebra (tedious)  
§  D-separation (analyzes graph) 
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P (xi|x1 · · ·xi−1) = P (xi|parents(Xi))

D-Separation 
§  Question: Are X and Y 

conditionally independent 
given evidence vars {Z}? 
§  Yes, if X and Y “separated” by Z 
§  Consider all (undirected) paths 

from X to Y 

§  No active paths = independence! 

§  A path is active if each triple 
is active: 
§  Causal chain A → B → C where B 

is unobserved (either direction) 
§  Common cause A ← B → C 

where B is unobserved 
§  Common effect (aka v-structure) 

 A → B ← C where B or one of its 
descendents is observed 
  

§  All it takes to block a path is 
a single inactive segment 
 

  

Active Triples Inactive Triples 
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D-Separation 

§  Given query          
§  Shade all evidence nodes 
§  For all (undirected!) paths between and  

§ Check whether path is active 
§  If active return 

  

§  (If reaching this point all paths have been 
checked and shown inactive) 
§ Return  

11 

Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}

Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}

? 

Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}

Example 

R 

T 

B 

D 

L 

T’ 

Yes 

Yes 

Yes 

12 
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All Conditional Independences 

§  Given a Bayes net structure, can run d-
separation to build a complete list of 
conditional independences that are 
necessarily true of the form 

§  This list determines the set of probability 
distributions that can be represented by 
Bayes’ nets with this graph structure  
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Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}

Topology Limits Distributions 
§  Given some graph 

topology G, only certain 
joint distributions can 
be encoded 

§  The graph structure 
guarantees certain 
(conditional) 
independences 

§  (There might be more 
independence) 

§  Adding arcs increases 
the set of distributions, 
but has several costs 

§  Full conditioning can 
encode any distribution 

X 

Y 

Z 

X 
Y 

Z 

X 
Y 

Z 
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X 
Y 

Z X 
Y 

Z 

X 
Y 

Z X 
Y 

Z X 
Y 

Z 

X 

Y 

Z 

X 

Y 

Z 

{X ⊥⊥ Z | Y }

{X ⊥⊥ Y,X ⊥⊥ Z, Y ⊥⊥ Z,

X ⊥⊥ Z | Y,X ⊥⊥ Y | Z, Y ⊥⊥ Z | X}

{}
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Inference by Enumeration 

§  Given unlimited time, inference in BNs is easy 
§  Recipe: 

§  State the marginal probabilities you need 
§  Figure out ALL the atomic probabilities you need 
§  Calculate and combine them 

§  Example: 

15 

B E 

A 

J M 

Example: Enumeration 
§  In this simple method, we only need the BN to 

synthesize the joint entries 

16 
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Variable Elimination 

§  Why is inference by enumeration so slow? 
§  You join up the whole joint distribution before you sum 

out the hidden variables 
§  You end up repeating a lot of work! 

§  Idea: interleave joining and marginalizing! 
§  Called “Variable Elimination” 
§  Still NP-hard, but usually much faster than inference 

by enumeration 

17 

§  Track objects called factors 
§  Initial factors are local CPTs (one per node) 

§  Any known values are selected 
§  E.g. if we know                  , the initial factors are 

§  VE: Alternately join factors and eliminate variables 18 

Variable Elimination Outline 

+r	   0.1	  
-‐r	   0.9	  

+r	   +t	   0.8	  
+r	   -‐t	   0.2	  
-‐r	   +t	   0.1	  
-‐r	   -‐t	   0.9	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

+t	   +l	   0.3	  
-‐t	   +l	   0.1	  

+r	   0.1	  
-‐r	   0.9	  

+r	   +t	   0.8	  
+r	   -‐t	   0.2	  
-‐r	   +t	   0.1	  
-‐r	   -‐t	   0.9	  

T 

R 

L 



10 

Variable Elimination Example 

19 

Sum out R 

T 

L 

+r	   +t	   0.08	  
+r	   -‐t	   0.02	  
-‐r	   +t	   0.09	  
-‐r	   -‐t	   0.81	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

+t	   0.17	  
-‐t	   0.83	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

T 

R 

L 

+r	   0.1	  
-‐r	   0.9	  

+r	   +t	   0.8	  
+r	   -‐t	   0.2	  
-‐r	   +t	   0.1	  
-‐r	   -‐t	   0.9	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

Join R 

R, T 

L 

Variable Elimination Example 

Join T Sum out T 
T, L L 

* VE is variable elimination 

T 

L 

+t	   0.17	  
-‐t	   0.83	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

+t	   +l	   0.051	  
+t	   -‐l	   0.119	  
-‐t	   +l	   0.083	  
-‐t	   -‐l	   0.747	  

+l	   0.134	  
-‐l	   0.886	  
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Example 

Choose A 

21 

Example 

Choose E 

Finish with B 

Normalize 

22 
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General Variable Elimination 
§  Query: 

§  Start with initial factors: 
§  Local CPTs (but instantiated by evidence) 

§  While there are still hidden variables (not Q or evidence): 
§  Pick a hidden variable H 
§  Join all factors mentioning H 
§  Eliminate (sum out) H 

§  Join all remaining factors and normalize 

23 

Another (bit more abstractly worked 
out) Variable Elimination Example 

24 

Computational complexity critically depends on the largest factor being 
generated in this process.  Size of factor = number of entries in table.  In 
example above (assuming binary) all factors generated are of size 2 --- as 
they all only have one variable (Z, Z, and X3 respectively).  



13 

§  For the query P(Xn|y1,…,yn) work through the following two different 
orderings as done in previous slide: Z, X1, …, Xn-1 and X1, …, Xn-1, 
Z.  What is the size of the maximum factor generated for each of the 
orderings? 

§  Answer: 2n versus 2 (assuming binary) 
§  In general: the ordering can greatly affect efficiency.   

Variable Elimination Ordering 

25 

… 

… 

Computational and Space 
Complexity of Variable Elimination 

§  The computational and space complexity of variable 
elimination is determined by the largest factor 

§  The elimination ordering can greatly affect the size of the 
largest factor.   
§  E.g., previous slide’s example 2n vs. 2 

§  Does there always exist an ordering that only results in 
small factors? 
§  No! 

26 
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Worst Case Complexity? 
§  Consider the 3-SAT clause:   

       which can be encoded by the following Bayes’ net: 

§  If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution. 
§  Subtlety: why the cascaded version of the AND rather than feeding all OR clauses into a single 

AND?  Answer: a single AND would have an exponentially large CPT, whereas with representation 
above the Bayes’ net has small CPTs only.  

§  Hence inference in Bayes’ nets is NP-hard.  No known efficient probabilistic inference in general. 
27 

… 

… 

Polytrees 

§  A polytree is a directed graph with no 
undirected cycles 

§  For poly-trees you can always find an 
ordering that is efficient  
§  Try it!! 

§  Cut-set conditioning for Bayes’ net 
inference 
§ Choose set of variables such that if removed 

only a polytree remains 
§  Think about how the specifics would work out! 28 
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Approximate Inference: Sampling 
§  Basic idea: 

§  Draw N samples from a sampling distribution S 
§  Compute an approximate posterior probability 
§  Show this converges to the true probability P 

§  Why? Faster than computing the exact answer 

§  Prior sampling: 
§  Sample ALL variables in topological order as this can be done quickly 

§  Rejection sampling for query      
§  = like prior sampling, but reject when a variable is sampled inconsistent 

with the query, in this case when a variable Ei is sampled differently 
from ei 

§  Likelihood weighting for query 
§  = like prior sampling but variables Ei are not sampled, when it’s their 

turn, they get set to ei, and the sample gets weighted by  
 P(ei | value of parents(ei) in current sample) 

§  Gibbs sampling: repeatedly samples each non-evidence variable 
conditioned on all other variables à can incorporate downstream evidence  

  
 

29 

Prior Sampling 

Cloudy 

Sprinkler Rain 

WetGrass 

Cloudy 

Sprinkler Rain 

WetGrass 
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+c	   0.5	  
-‐c	   0.5	  

+c	  
	  

+s	   0.1	  
-‐s	   0.9	  

-‐c	  
	  

+s	   0.5	  
-‐s	   0.5	  

+c	  
	  

+r	   0.8	  
-‐r	   0.2	  

-‐c	  
	  

+r	   0.2	  
-‐r	   0.8	  

+s	  
	  
	  
	  

+r	  
	  

+w	   0.99	  
-‐w	   0.01	  

-‐r	  
	  

+w	   0.90	  
-‐w	   0.10	  

-‐s	  
	  
	  
	  

+r	  
	  

+w	   0.90	  
-‐w	   0.10	  

-‐r	  
	  

+w	   0.01	  
-‐w	   0.99	  

Samples: 

+c, -s, +r, +w 
-c, +s, -r, +w 

… 
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Example 
§  We’ll get a bunch of samples from the BN: 

 +c, -s, +r, +w 
 +c, +s, +r, +w 
 -c, +s, +r,  -w 
 +c, -s, +r, +w 
 -c,  -s,  -r, +w 

§  If we want to know P(W) 
§  We have counts <+w:4, -w:1> 
§  Normalize to get P(W) = <+w:0.8, -w:0.2> 
§  This will get closer to the true distribution with more samples 
§  Can estimate anything else, too 
§  What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)? 
§  Fast: can use fewer samples if less time 

Cloudy 

Sprinkler Rain 

WetGrass 

C 

S R 

W 

31 

Likelihood Weighting 

32 

+c	   0.5	  
-‐c	   0.5	  

+c	  
	  

+s	   0.1	  
-‐s	   0.9	  

-‐c	  
	  

+s	   0.5	  
-‐s	   0.5	  

+c	  
	  

+r	   0.8	  
-‐r	   0.2	  

-‐c	  
	  

+r	   0.2	  
-‐r	   0.8	  

+s	  
	  
	  
	  

+r	  
	  

+w	   0.99	  
-‐w	   0.01	  

-‐r	  
	  

+w	   0.90	  
-‐w	   0.10	  

-‐s	  
	  
	  
	  

+r	  
	  

+w	   0.90	  
-‐w	   0.10	  

-‐r	  
	  

+w	   0.01	  
-‐w	   0.99	  

Samples: 

+c, +s, +r, +w 
… 

Cloudy 

Sprinkler Rain 

WetGrass 

Cloudy 

Sprinkler Rain 

WetGrass 
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Likelihood Weighting 
§  Sampling distribution if z sampled and e fixed evidence 

§  Now, samples have weights 

§  Together, weighted sampling distribution is consistent 

Cloudy 

R 

C 

S 

W 

33 

Gibbs Sampling 
§  Idea: instead of sampling from scratch, create samples 

that are each like the last one. 

§  Procedure: resample one variable at a time, conditioned 
on all the rest, but keep evidence fixed.   

§  Properties: Now samples are not independent (in fact 
they’re nearly identical), but sample averages are still 
consistent estimators! 

§  What’s the point: both upstream and downstream 
variables condition on evidence. 

34 



18 

Markov Models 
§  A Markov model is a chain-structured BN 

§  Each node is identically distributed (stationarity) 
§  Value of X at a given time is called the state 
§  As a BN: 

§  The chain is just a (growing) BN 
§  We can always use generic BN reasoning on it if we truncate the chain at a 

fixed length 
§  Stationary distributions 

§  For most chains, the distribution we end up in is independent of the initial 
distribution 

§  Called the stationary distribution of the chain 

§  Example applications: Web link analysis (Page Rank) and Gibbs Sampling 

X2 X1 X3 X4 

Hidden Markov Models 
§  Underlying Markov chain over states S 
§  You observe outputs (effects) at each time step 

§  Speech recognition HMMs: 
§  Xi: specific positions in specific words; Ei: acoustic signals 

§  Machine translation HMMs: 
§  Xi: translation options; Ei: Observations are words 

§  Robot tracking: 
§  Xi: positions on a map; Ei: range readings 

X5 X2 

E1 

X1 X3 X4 

E2 E3 E4 E5 
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Online Belief Updates 
§  Every time step, we start with current P(X | evidence) 
§  We update for time: 

§  We update for evidence: 

§  The forward algorithm does both at once (and doesn’t normalize) 

X2 X1 

X2 

E2 

Recap: Particle Filtering 
§  Particles: track samples of states rather than an explicit distribution 

38 

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3) 

Elapse Weight Resample 

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2) 

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4 

(New) Particles: 
    (3,2) 
    (2,2) 
    (3,2)    
    (2,3) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (3,2) 
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Dynamic Bayes Nets (DBNs) 
§  We want to track multiple variables over time, using 

multiple sources of evidence 
§  Idea: Repeat a fixed Bayes net structure at each time 
§  Variables from time t can condition on those from t-1 

§  Discrete valued dynamic Bayes nets are also HMMs 

G1
a 

E1
a E1

b 

G1
b 

G2
a 

E2
a E2

b 

G2
b 

t =1 t =2 

G3
a 

E3
a E3

b 

G3
b 

t =3 

Best Explanation Queries 

§  Query: most likely seq: 

X5 X2 

E1 

X1 X3 X4 

E2 E3 E4 E5 

40 



21 

Best Explanation Query Solution 
Method 1: Search 

§  States:  {(), +x1, -x1, +x2, -x2, …, +xt, -xt} 

§  Start state: () 

§  Actions:  in state xk, choose any assignment for state xk+1 

§  Cost:  

§  Goal test: goal(xk) = true iff k == t  
à Can run uniform cost graph search to find solution 
à Uniform cost graph search will take O( t d2 ).  Think about this! 

slight abuse of notation, 
assuming P(x1|x0) = P(x1) 

Best Explanation Query Solution Method 2: Viterbi 
Algorithm (= max-product version of forward algorithm) 

42 

Viterbi computational complexity: O(t d2) 

Compare to forward algorithm: 
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Parameter Estimation 
§  Estimating distribution of random variables like X or X | Y 
§  Empirically: use training data 

§  For each outcome x, look at the empirical rate of that value: 

§  This is the estimate that maximizes the likelihood of the data 

§  Laplace smoothing 
§  Pretend saw every outcome k extra times 

§  Smooth each condition independently: 

r g g 

Decision Networks 
§  MEU: choose the action which 

maximizes the expected utility 
given the evidence 

§  Can directly operationalize this 
with decision networks 
§  Bayes nets with nodes for 

utility and actions 
§  Lets us calculate the expected 

utility for each action 

§  New node types: 
§  Chance nodes (just like BNs) 
§  Actions (rectangles, cannot 

have parents, act as observed 
evidence) 

§  Utility node (diamond, depends 
on action and chance nodes) 

Weather 

Forecast 

Umbrella 

U 

44 
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Decision Networks 
§  Action selection: 

§  Instantiate all 
evidence 

§  Set action node(s) 
each possible way 

§  Calculate posterior 
for all parents of 
utility node, given 
the evidence 

§  Calculate expected 
utility for each action 

§  Choose maximizing 
action 

Weather 

Forecast 

Umbrella 

U 

45 

Example: Decision Networks 

Weather 

Umbrella 

U 

W P(W) 
sun 0.7 
rain 0.3 

A W U(A,W) 
leave sun 100 
leave rain 0 
take sun 20 
take rain 70 

Umbrella = leave 

Umbrella = take 

Optimal decision = leave 
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Example: Decision Networks 

Weather 

Forecast 
=bad 

Umbrella 

U 

A W U(A,W) 

leave sun 100 
leave rain 0 
take sun 20 
take rain 70 

W P(W|F=bad) 
sun 0.34 
rain 0.66 

Umbrella = leave 

Umbrella = take 

Optimal decision = take 

47 

Decisions as Outcome Trees 

48 

U(t,s) 

W | {b} W | {b} 

take leave 

sun 

U(t,r) 

rain 

U(l,s) U(l,r) 

rain sun 

{b} 
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VPI Example: Weather 

Weather 

Forecast 

Umbrella 

U 

A W U 

leave sun 100 

leave rain 0 

take sun 20 

take rain 70 

MEU with no evidence 

MEU if forecast is bad 

MEU if forecast is good 

F P(F) 

good 0.59 

bad 0.41 

Forecast distribution 

49 

Value of Information 
§  Assume we have evidence E=e.  Value if we act now: 

§  Assume we see that E’ = e’.  Value if we act then: 

§  BUT E’ is a random variable whose value is 
 unknown, so we don’t know what e’ will be 

§  Expected value if E’ is revealed and then we act: 

§  Value of information: how much MEU goes up 
 by revealing E’ first then acting, over acting now: 

 

P(s | +e) 

{+e} 
a 

U 

{+e, +e’} 
a 

P(s | +e, +e’) 
U 

{+e} 
P(+e’ | +e) 
{+e, +e’} 

P(-e’ | +e) 
{+e, +e’} 

a 
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Example: Ghostbusters 
§  In (static) Ghostbusters: 

§  Belief state determined by 
evidence to date {e} 

§  Tree really over evidence 
sets 

§  Probabilistic reasoning 
needed to predict new 
evidence given past evidence 

§  Solving POMDPs 
§  One way: use truncated 

expectimax to compute 
approximate value of actions 

§  What if you only considered 
busting or one sense 
followed by a bust? 

§  You get a VPI-based agent! 

a

{e} 

e, a 

    e’ 
{e, e’} 

a

b

b, a 

    o 
b
’ 

abust 

{e} 

{e}, asense 

      e’ 
{e, e’} 

asense 

U(abust, {e}) 

abust 

U(abust, {e, e’}) 
51 


